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The stability of an immiscible layer of fluid bounded by two other fluids of different 
viscosities and migrating through a porous medium is analysed, both theoretically 
and experimentally. Linear stability analyses for both one-dimensional and radial 
flows are presented, with particular emphasis upon the behaviour when one of the 
interfaces is highly stable and the other is unstable. For one-dimensional motion, it is 
found that owing to the unstable interface, the intermediate layer of fluid eventually 
breaks up into drops. 

However, in the case of radial flow, both surface tension and the continuous 
thinning of the intermediate layer as it moves outward may stabilize the system. We 
investigate both of these stabilization mechanisms and quantify their effects in the 
relevant parameter space. When the outer interface is strongly unstable, there is a 
window of instability for an intermediate range of radial positions of the annulus. 
In this region, as the basic state evolves to larger radii, the linear stability theory 
predicts a cascade to higher wavenumbers. If the growth of the instability is sufficient 
that nonlinear effects become important, the annulus will break up into a number of 
drops corresponding to the dominant linear mode at the time of rupture. 

In the laboratory, a Hele-Shaw cell was used to study these processes. New 
experiments show a cascade to higher-order modes and confirm quantitatively the 
prediction of drop formation. We also show experimentally that the radially spreading 
system is stabilized by surface tension at small radii and by the continual thinning of 
the annulus at large radii. 

1. Introduction 
When a fluid is horizontally displaced by another in a porous medium, the interface 

between them may be either stable or unstable, depending on the relative viscosities 
of the fluids and on their miscibility. The basic mechanism of this instability was 
first described by Hill (1952) and later by Saffman & Taylor (1958). Consider the 
rectilinear displacement of a fluid of viscosity p2 by another fluid of viscosity p1 in a 
homogeneous porous medium (figure 1). We assume the motion of the fluids through 
the porous medium is governed by Darcy’s law 

u = --Vp = -MV P (1.1) 

where u denotes velocity, K is the permeability of the medium and p is pressure. 
M = ~ / p  is the mobility of the fluid. Suppose the interface between the two fluids 
is deformed slightly such that there is a perturbation of the interface of thickness 6x 

K 

P 
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FIGURE 1. Rectilinear displacement of a fluid by another fluid of different viscosity. 

FIGURE 2. Dispersion relation for the rectilinear displacement of two immiscible fluids. 

(figure lb). Then, from (l . l ) ,  the anomalous pressure across the displaced fluid is 
6 p  = (1/M2 - l/M])UGx, where U is the steady state velocity. If the net pressure 
difference is positive, then any small perturbation to the interface will grow, leading to 
an instability. Hence, the interface will be unstable when a less viscous fluid displaces 
a more viscous fluid (MI > M2). ‘Fingers’ of the displacing fluid will then develop 
and penetrate into the more viscous fluid ahead. 

We have assumed above that the interface between the two fluids is sharp, i.e. 
that the fluids are immiscible. A detailed stability analysis should therefore take into 
account the effect of surface tension. For disturbances in the form of normal modes 
proportional to exp(at+iky), the growth rate of the instability is found to be (Chouke, 
Meurs & Poel 1959) 

Here T denotes the surface tension coefficient between the two fluids and k is the 
wavenumber of the instability. The dispersion relation (1.2) shows that the effect 
of surface tension (second term) is to stabilize short-wavelength perturbations. The 
competition between the viscous instability and the surface tension leads to a most 
unstable mode (figure 2). 

In many situations, there is a continuous gradient of viscosity in the intermediate 
region between the two fluids, resulting from a certain degree of miscibility. Although 
in this case there are no interfaces, since molecular diffusion and dispersion will 
lead to a smooth variation of the viscosity, instability can still occur (Paterson 1985; 
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Manickam & Homsy 1993). The mathematical analysis of these miscible displacement 
problems is often complicated because of the time-dependent nature of the base state. 
Usually various approximations are made which lead to simpler problems. 

The phenomenon of viscous fingering in porous media is important in many 
natural and industrial situations. An example of the former arises in the geological 
context. Sequential batches of magmas with different chemical compositions, and 
hence different viscosities, often rise from depth along fissures in the Earth's crust, 
leading to magmatic intrusions. The extent of mixing occurring during such ascent 
has a key role in controlling the composition of the magma, which is an issue of 
central importance in petrology (McBirney 1984). In the industrial context, viscous 
fingering occurs, for example, in oil recovery processes, fixed bed regeneration in 
chemical processes and underground storage of gas (Homsy 1987). In many of these 
applications the instability is not desired and there have been a number of attempts to 
suppress it. These usually involve the reduction of the unfavourable viscosity gradient 
by the addition of a third fluid, of variable viscosity, at the boundary between the host 
and displacing fluids. Mungan (1971) showed experimentally that a spatially varying 
viscosity in this intermediate layer can stabilize the interface and these observations 
have been confirmed by a theoretical analysis of Gore11 & Homsy (1983). 

However, the stability of the immiscible displacement of an intermediate layer of 
fluid, bounded by two other fluids of different viscosities, has not been analysed in 
detail. The purpose of the present work is to investigate the stability of such flow, 
both theoretically and experimentally. A linear theoretical model is developed and 
quantitatively compared with new laboratory experiments. This simplified model 
allows a deeper understanding of some of the processes present in the more complex 
variable-viscosity problems. We analyse the interaction between the two interfaces 
and the effect of the thickness of the intermediate layer, in both rectilinear and 
circular geometries. The latter case is particularly interesting since surface tension can 
stabilize a single interface at small radii (Paterson 1981). However, here we identify a 
new mechanism of stabilization of a circularly spreading annulus which operates at 
large radii. Finally, we examine situations in which the intermediate layer is unstable 
and may break up to form drops. 

In 0 2, the rectilinear flow of an immiscible layer of fluid is analysed. In 6 3, we 
review and extend previous work on the linear stability of the radial displacement of 
a single interface. Since the base state is evolving with time, the most unstable mode 
also changes as the interface moves outward. New experimental results are presented 
which confirm this theoretical approach. Combining the results of &j 2 and 3, we then 
consider the linear instability of a radially spreading annulus of fluid. A theoretical 
model is developed and a quantitative comparison with experimental observations is 
presented. In 0 5, we consider the stabilization of the flow by suitable variation of the 
displacement velocity. Finally, in 0 6, we draw some conclusions. 

2. Rectilinear displacement 
We begin by analysing the stability of the rectilinear displacement of a layer of fluid 

in order to gain fundamental insight on the behaviour of a three-fluid system. Later 
in the paper, we shall build upon these results when we analyse the more complex 
problem of a spreading annulus. Consider the displacement in a porous medium of 
an intermediate layer of fluid, bounded by two other fluids, as sketched in figure 3. 
The three fluids are assumed to have different viscosities and to be immiscible. The 
motion of the fluids is described by Darcy's law (cf. (Ll)), which may be written in 
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FIGURE 3. Rectilinear displacement of an intermediate layer of fluid. 

terms of a velocity potential 4 = Mp as 

u = -v+ (2.1) 

v * u = o .  (2.2) 

v24 = 0. (2.3) 

and mass conservation 

The velocity potential therefore satisfies Laplace's equation 

Across each interface the velocity is continuous and the pressure changes by an 
amount corresponding to the effect of surface tension. For a planar interface, these 
equations admit the steady state solution 

4; = -Ux + c j ,  j = 1,2,3, (2.4) 

where the subscripts 1, 2 and 3 refer to the trailing, intermediate and leading 
fluids respectively (figure 3). The constants c j  may be determined by specifying the 
magnitude of the pressure at some point in the flow. 

In order to examine the stability of the interfaces, we consider a wavelike per- 
turbation a = Aexp(iky + at )  at the interface between fluids 1 and 2, and a similar 
perturbation b = Bexp(iky + at )  at the interface between fluids 2 and 3, where (r is 
the growth rate of the instability and k its wavenumber. The solution of (2.3) has the 
form 4, = 4; + 4;, with 

(2.5a) 
(2.5b) 
(2%) 

where a, p, y and E are constants to be determined. The continuity of velocity 
and pressure across the interface between fluids 1 and 2 (at x = Ut)  are expressed, 
respectively, by 

1 - u2 - at (2.6) u l -  1 -  

and ($) 4l a+--Tu,,. 4; 
X M1 X M2 

(2.7) 

Note that the last term in (2.7) arises from the surface tension at the interface. 
We adopt here the simple formulation of Chouke et al. (1959) for this effect. Later 
in the paper, we shall discuss the inclusion of a more precise model for the surface 
tension. Similar velocity and pressure conditions may be written for the interface 
between fluids 2 and 3 (at x = Ut + D).  The resulting system of equations may be 
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solved for the growth rate of the instability, a, and for the ratio of the amplitudes of 
the perturbations at the two interfaces, A / B .  The solution is 

a0 ( $ ) 2  + U l ( 5 )  + u2 = 0 

where ao, a1 and a2 are given by 

a0 = (1 + M1 M2 %) M2 sinh(kD) + 

a1 = (( 2 - 2) + (2 + 2) ,,(kD)’) TM2 sinh(kD), 

a2 = (- (1 - 2) + %(kD)’) (( 1 - 2) + ,(kD)’) TM2 sinh(kD) 
U D  

and 

A alUk - - -  

sinh(kD) + sinh(kD) + cosh(kD) 

(2.9) 

We have assumed here that the surface tension coefficient, T ,  is the same at both 
interfaces. 

Depending upon the relative magnitudes of the mobilities of the fluids, each 
interface may be either locally stable or locally unstable. For example, if M1 > M2 
then the interface between fluids 1 and 2 will be locally unstable. The global stability 
is determined by the relative viscosity of the bounding fluids. Thus, in the absence 
of the intermediate layer, if M I  < M3, the displacement would be stable. Figure 4 
shows a plot of the dispersion relation for a case in which both interfaces are locally 
unstable, M1 > M2 and M2 > M3, (and hence, the flow is also globally unstable). 
The configuration of the intermediate layer, obtained from the ratio of amplitudes 
A / B ,  has been sketched beside each curve. It may be seen that there are two different 
modes, namely a sinuous mode in which the instabilities at the two interfaces grow in 
phase (solid curve), and a varicose mode in which the instabilities grow in antiphase 
(dashed curve). Both modes are unstable to perturbations of long wavelengths, with 
the most unstable mode being that for which the interfaces are in phase; short 
wavelengths are stabilized by surface tension. 

In figure 5, the dispersion relation for a case in which only the leading interface is 
unstable is represented; the flow is globally stable since M1 < M3. The varicose mode 
is now stable for all wavelengths. The sinuous mode is unstable for long wavelengths, 
but stabilized by surface tension for short wavelengths. Similar results are obtained 
for a globally unstable flow with only one unstable interface: only one of the modes 
is unstable. 

The limit of a thin intermediate layer 
We now consider the limit of a thin intermediate layer, as this will enable a 

simplification of equations (2.8) and (2.9) and a fuller understanding of the dynamics 
of the different modes. 
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FIGURE 4. Dispersion relation when the two interfaces are locally unstable, Ml/M2 = 2 and 

MZ/M3 = 2.5. 

When kD << 1, we obtain 

and 

2 T  M1M3 
UD2 Mi - M3 ($) = 1 - (- 

( ; ) 2  = - 

_ -  M 2  1 
M3 

M2 1-- 
M1 

.~ 

(2.10a) 

(2.10b) 

(1-$)2+ ($4) 2 

(2-2) (1-2) (2 - 1) $(kD)2)  

(2.1 la) 

. (2.11b) 
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FIGURE 5. Dispersion relation when only the leading interface is unstable, M2/M3 = 2 ;  the flow is 

globally stable, Mi/M3 = 0.5. 

FIGURE 6. Breakup of the intermediate layer into drops. The eventual separation of the drops will 
occur owing to the effect of surface tension, which tends to smooth the pointing edges at the rear 
at the moment of rupture. 

Equation ( 2 . 1 0 ~ )  describes the stability of a mode with a behaviour similar to the 
Saffman-Taylor mode (compare with (1.2)). It is determined only by the properties 
of the bounding fluids, 1 and 3, and when unstable, is the dominant mode (figure 4). 
The other solution, given by (2.10b), has a smaller growth rate and represents an 
internal mode. The distortion of the interfaces corresponding to the Saffman-Taylor 
mode is always sinuous (in phase, A / B  > 0). In contrast, the internal mode leads 
to a varicose deformation (antiphase) of the intermediate layer when both interfaces 
are locally unstable ( M I  > M2 > M3),  whereas a sinuous deformation is observed 
when one of the interfaces is highly stable (figure 5). The results in figure 5 suggest 
that even when the flow is globally stable, so that the Saffman-Taylor mode (GI) is 
stable, the internal mode remains unstable because of the local instability at one of 
the interfaces. This result suggests why the intermediate layer may eventually break 
up into drops. A sketch of the expected evolution of this layer is shown in figure 6. 

The linear displacement problem, described above, is of fundamental interest in that 
it illustrates in a simple way the interaction between the local and global stabilities and 
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FIGURE 7. Radial displacement of a fluid by another of different viscosity. 

their contribution to the resulting flow pattern. However, in some practical situations 
the fluid may spread radially from a relatively small localized area (Paterson 1981). 
In the following sections of this paper, we generalize the analysis to consider such 
radial displacements. 

3. The dynamics of the radial displacement of a single interface 
3.1. Theoretical description 

Before extending the analysis of 5 2, by considering the radial spreading of an annulus 
of fluid, we first examine the behaviour of a single interface in radial source flow. This 
will identify some of the differences between the rectilinear and radial displacement 
problems, which arise because the base state evolves with time in the latter case. We 
will also test a simple method of determining how this time dependence influences 
the wavelength of the instability by comparison with experimental observations. 

The linear stability of a circular interface spreading in a Hele-Shaw cell was 
modelled by Wilson (1975), and thereafter by Paterson (1981). Figure 7 depicts the 
immiscible displacement of fluid 2 by fluid 1. The flow is described by Laplace’s 
equation (cf. (2.3)), which in planar polar coordinates reads 

The radial velocity component is u = -& For a point source with volume flow rate 
per unit depth Q, the velocity potential of the steady flow satisfying (3.1) is 

nr + c j ,  j = 1,2. Q +? = -- 1 ’ 271 
This solution satisfies the continuity of velocity at each interface. The constants c j  
may be determined by prescribing both the pressure discontinuity which results from 
the surface tension at the interface and the magnitude of the pressure at some point 
in the flow. 

Assuming a quasi-steady flow, in which the velocity at a certain radius is locally 
constant, and examining the stability of the interface to wavelike perturbations of the 
form A,(t) exp(inO), Paterson (1981) found that the growth rate of these perturbations 
is given by 

where A,  denotes the amplitude of the sinusoidal mode with discrete azimuthal 
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FIGURE 8. Growth rate of each mode as a function of the radial position of the interface. 

wavenumber n and R is the radial position of the interface. If the mobility of the 
inner fluid is much larger than that of the outer fluid, M I  >> M2, the interface is very 
unstable and (3.3) may be simplified to the form 

R 
n(n + . A,, n - 1  

An R2 (3.4) 

The relation above shows that for sufficiently small radius, all modes are stabilized 
by surface tension. However, as the interface progresses outward, the different modes 
become unstable at different radial positions. We may define the critical radius at 
which instability first occurs, &, as the radius where mode two begins to grow (since 
mode one corresponds only to a displacement of the circle of inner fluid relative to 
the point source, with no change of shape). From (3.4), & is given by 

12nM2T 

Q & =  

and (3.4) may be rewritten as 

(3.5) 

In figure 8, we show the variation of the growth rate of each mode as a function of 
the non-dimensional radial position 9 = R/&. The minimum radius for instability, 
for each mode n, is R = n(n + 1)&/6. As the radial position of the interface increases, 
the growth rate of each mode increases to a maximum value 

at R = n(n + 1)&/4. The growth rate of this mode subsequently decays, although 
remaining positive. Therefore, as R increases, the most unstable mode n gradually 
increases. Analysis of second-order terms shows that the linear theory remains valid 
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FIGURE 9. Amplitude of each mode as a function of the radial position of the interface, for an 
instantaneous disturbance of amplitude A0 at the critical radius (model A). 

while the amplitude of the perturbation remains small compared to its wavelength, 
nA,/R << 1. As a result, if the initial disturbance is sufficiently small, there may be 
a cascade through several modes before the amplitude of the disturbance has grown 
sufficiently for nonlinear effects to dominate. In this case, the development of the 
linear instability may be described by integrating the growth rate of each mode as a 
function of time (or interface radius). If we assume that owing to random noise in 
the system, the nth mode is perturbed with an amplitude A0 at the radial position 
90, = &,/&, then since Rt = Q/2nR, we have for each mode from (3.6), 

The evolution of the system thus depends critically upon the initial disturbance. We 
may envisage two different model situations. Firstly, one may consider a situation 
in which all modes are perturbed instantaneously with the same amplitude A0 at a 
particular radius l70 - model A. Figure 9 shows the predicted magnitude for each of 
the modes as a function of 9 when & is taken to coincide with the critical radius & 
(equation (3.5)), that is 90" = 1 for all n. The higher modes are initially stable and 
hence A, initially decays for n 2 3; these modes then become unstable at larger R 
and A,  begins to grow. As the radius increases, each mode in turn becomes dominant 
for a range of radii, and hence there is a cascade to higher modes. The precise details 
of this cascade depend upon the magnitude of &. The cascade predicted by linear 
theory only continues while nonlinear effects are negligible. 

As an alternative initial condition, one may consider a constant low level of noise 
in the system throughout the experiment - model B. Each mode n is assumed to 
be perturbed with an amplitude A0 until the radius where it first becomes unstable, 
gon = n(n + 1)/6; subsquently, A,  begins to grow. The magnitude of each mode as a 
function of the radius, as predicted for this initial condition, is graphed in figure 10. 
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FIGURE 10. Amplitude of each mode as a function of the radial position of the the interface, for a 

constant disturbance of amplitude A0 (model B). 

Comparison of figures 9 and 10 shows that model B leads to a faster cascade to 
higher modes as 9 increases. 

Note that, as A,  increases, nonlinear effects become increasingly important and the 
linear theory developed here ceases to apply. However, we may compare our linear 
theory, in particular the prediction of a cascade to higher modes, with experimental 
observations. We first describe the experimental method. 

3.2. Experimental method 

Two-dimensional flow in a porous medium may be modelled in the laboratory using 
a Hele-Shaw cell. This consists of two closely spaced parallel plates. The analogue 
mobility of the fluid in this system is related to this gap thickness, b, by M = b2/12p 
(Saffman & Taylor 1958). The Hele-Shaw cell used here was made of two 13 mm thick 
perspex disks, 420 mm in diameter. The disks were screwed together and separated 
by washers to maintain a uniform gap spacing. Most experiments were conducted 
with a plate spacing of 0.75 mm. The fluids were injected through a nozzle 10 mm in 
diameter, at the centre of the top disk. 

The rate of addition of the fluid was controlled with a high-precision needle valve. 
The pressure difference across this valve was set to approximately 2 atm by applying 
air pressure ; this was sufficiently large that the increasing pressure difference across 
the Hele-Shaw cell during an experiment was negligble. Therefore, the flow rate was 
virtually constant. 

The experiment involved the injection of air into the cell previously filled with 
glycerine. The flow rate of air was measured with a soap film meter (Isenberg 1978). 
The range of flow rates (per unit depth) covered was 0.73 to 3.2 cm2 s-l. The 
kinematic viscosity of the liquid was measured with a U-tube, direct flow, capillary 
viscometer (see table 1). 
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Fluid Viscosity, p (g cm-' s-l) 
glycerine 7.81 63 (with air)' 
diluted glycerine 1.27 16 (with silicone oil DC1000) 
cooking oil 0.65 32 (with air)' 
natrosol solution 93.8 
silicone oil DClOOO 11.0 16 (with diluted glycerine) 
silicone oil DC12500 128 

Surface tension, T (g sp2) 

TABLE 1. Properties of the fluids. * Tennent (1971) 

3.3. Comparison with experiments 
Paterson (1981) observed the rapid growth of eight fingers, as air was blown at a 
relatively large flow rate, Q = 9.3 cm2 s-l, into glycerine in a circular Hele-Shaw cell. 
That author suggested that the most unstable mode at onset of the instability grew 
very rapidly and therefore determined the number of fingers. Here, we present new 
experimental results where much smaller flow rates were used. As a result, the growth 
rate of the instability is sufficiently small so that the linear theory remains valid over 
a considerable range of radial positions. This enables the observation of a cascade to 
higher modes. 

In figure 11, a sequence of photographs of an experiment with a very low rate 
of injection of air is shown. The glycerine has been dyed for visualization. The 
mobilities of air and glycerine were, respectively, M1=2.6 cm3 s g-' and M2 = 
6.0 x cm3 s g-l. These values satisfy our earlier theoretical assumption that 
M1 >> M2. Here Q = 0.73 cm2 s-', so that R, = 0.20 cm (see table 1 and equation 
(3.5)). The range of 98 in this experiment is approximately 1 through to 50. The 
transition from mode four to mode five is clearly visible. It is difficult to say if mode 
three dominates at an earlier stage. These observations are in excellent accord with the 
theoretical predictions of model B, shown in figure 10. It seems that the perturbation 
cannot be seen for A,/& smaller than approximately 10. Model A (figure 9) clearly 
underpredicts the observed wavenumbers. 

In figure 12, a sequence of photographs of an experiment with a larger flow rate 
of air is presented. The critical radius is now R, = 0.045 cm (Q = 3.2 cm2 s-l). 

The range of in the photographs is approximately 1 to 133. Mode six appears 
to dominate from the moment the perturbation becomes visible until the end of 
the experiment. This is again in good agreement with the predictions of model B 
(figure 10). However, the rate of growth of the fingers is now quite large, and so at the 
later stages (photographs ( d )  and ( e ) )  the linear theory is no longer valid. The results 
above support model B, that is, the initial disturbance was of constant magnitude 
resulting, for example, from irregularities on the perspex surface ; this is in contrast 
to model A, of an instantaneous disturbance. 

In all our experiments, the capillary number Ca = pRJT was, approximately, in 
the range 10-3-10-1. These relatively small values of Ca allow us to use the simple 
formulation in (2.7) and (4.4) for the pressure jump resulting from the surface tension 
at the interface between the two fluids (Saffman & Taylor 1958; Chouke et al. 1959). 
Indeed, as shown by Maxworthy (1989), more detailed theories which include both 
the curvature of the interface in the thin gap of a Hele-Shaw cell (Park & Homsy 
1984) and the effect of the viscous film left behind on the plate as the interface moves 
- wetting effect (Schwartz 1986; Reinelt 1988) lead to differences in the wavenumber 
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FIGURE 11. Displacement of glycerine by air at a flow rate Q = 0.73 cm2 s-l: 

(a )  9 = 8.5, ( b )  9 = 15, (c) W = 21, ( d )  W = 23 and (e) W = 44. The scale is 1 cm. 

and the growth rate of the most unstable mode of the order of the precision of 
the current experimental techniques. Also, for the range of Ca in this study, the 
correction of the radial displacement velocity for the plate wetting effect is small, less 
than 10% (Saffman 1986; Maxworthy 1989), and we have therefore neglected it. The 
good agreement between our theoretical predictions and experimental observations 
supports this simple approach. 

4. The dynamics of the radial displacement of an annulus of fluid 
4.1. Stability analysis 

We now combine the methods and results of § 5 2 and 3 to consider the stability of a 
spreading annulus of fluid, as shown in figure 13. As described previously in 0 3, the 
flow is governed by Laplace’s equation (cf. (3.1)). The steady state velocity potential 
is 

nr + cj,  j = 1,2,3 (4.1) 
$ ? = - - I  Q 

2n 
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FIGURE 12. Displacement of glycerine by air at a flow rate Q = 3.2 cm2 s-l 

(a )  W = 38, ( b )  W = 56, (c) 9 = 78, ( d )  W = 89 and ( e )  9 = 133. 

where subscripts 1, 2 and 3 refer to the inner, annulus and outer fluids, respectively. 
The constants c j  may be determined by prescribing both the pressure difference due 
to surface tension at each interface and the magnitude of the pressure at some point 
in the flow. 

Suppose that at some time the positions of the inner and outer interfaces are, 
respectively, r = R1 and r = R2 (figure 13) and that both interfaces are perturbed 
from the steady state circular configuration. We assume that the interface at r = R1 
undergoes a wavelike perturbation a = A,(t)exp(inO) and the interface at r = R2 a 
perturbation b = B,(t)exp(inO). The amplitudes A,  and B, are functions of time, t, 
and n = 1,2,3.. . is the quantized azimuthal wavenumber. 

The solution of (3.1) corresponding to this linear perturbation has the form 6 j  = 
47 + 6; with 

(4.2a) 
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FIGURE 13. Radial displacement of an annulus of fluid. 

(4.2b) 

( 4 . 2 ~ )  

The functions of time in the equations above may be determined by the boundary 
conditions at each interface. The continuity of radial velocity at the interface between 
fluids 1 and 2 (at r = R1) requires that 

vyra + v: = v;ra + ui  = a,. (4.3) 

The pressure condition at this interface is expressed by 

Similar continuity conditions may be written for the interface between fluids 2 and 
3 (at r = R2). The resulting system of equations may be solved for the growth rate 
of the instabilities of the two interfaces, A,, and Brit. As found previously for the 
rectilinear displacement problem (see 4 2), there is an internal mode associated with 
the local stability of each of the two interfaces, and a global mode determined by the 
properties of only fluids 1 and 3. The general solution for this situation is complex. 
Generally, if the global mode is unstable, then fingers of the less viscous, trailing fluid 
will penetrate into the fluid ahead, as in the single interface problem. If the global 
mode is stable, but the internal mode is unstable, then the annulus may break up into 
a series of drops. It is this novel latter situation which we investigate in more detail. 

We consider the limit in which the viscosity of the displacing fluid (fluid 1) is very 
large, so that its mobility is very small, M I  + 0, and hence A,, A,, -+ 0. Physically, 
this means that the inner interface is nearly rigid and so it remains almost circular 
as it moves outward with time. The growth rate of the instability of mode n at the 
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outer interface is then given approximately by 

If we assume that 
the wavelength of 

M2 >> M3 and also that the annulus of fluid 2 is thin compared to 
the instability (n6 << l), we have 

M? 
B,. 

where 6 = (R2 - R1)/R1 is a non-dimensional thickness of the annulus. The first term 
on the right-hand side of the expression above represents the opposing effects of the 
viscosity difference between fluids 2 and 3 (destabilizing effect) and of the surface ten- 
sion at this interface (stabilizing effect). The numerator of this term is similar to that 
found for the single interface in radial source flow (cf. (3.4)). The last term in (4.6) rep- 
resents a new stabilizing effect which results from the thinning of the intermediate layer 
as the radial position increases. There is no analogous term in the single interface case, 
equation (3.4). A decrease in the magnitude of 6 tends to stabilize any particular per- 
turbation to the interface between fluids 2 and 3. We deduce that at small radii, a per- 
turbation of given wavenumber may be stabilized by surface tension, whereas at very 
large radius, the same mode may be stabilized by the rapid thinning of the annulus. 
As a result, for each mode there may only be a range of radii over which it is unstable. 

As the system evolves with time, the thickness of the intermediate layer, 6, decreases. 
However, the total volume of annulus fluid is fixed. Let us therefore define the non- 
dimensional variable 

where I/ = 2nR56 is the volume per unit depth of the annulus fluid and R, = 
12nM3T/Q;  A is thus a volume ratio, that of annulus fluid to the volume enclosed 
by the critical radius. Equation (4.6) may be written in terms of the non-dimensional 
variables A and 92 = R2/& as 

B,, Q - A g 3 / n  + ( n  - 1 ) g  - in(n2  - 1) 
(4.8) - - - -  

B, 2~R,2 9 2 3  (1 + A92'2/n) 

We have seen that there is a range of radii for which each mode is unstable, B,,/B, > 0 
(n  = 1,2,3. .  .), for prescribed input conditions. Since n can only take integer values, the 
envelope of the unstable domain is given as a sequence of the arcs of the neutral curves 

= 0, B,, 
Bn 

n =  1,2,3 ... (4.9) 

with the end points of each arc defined by the condition Bn+l,/Bn+l = B,,/B,. In the 
limit of large n, this may be approximated by the solution of 

; (2) = O  

coupled with equation (4.9). 

(4.10) 
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FIGURE 14. Stability diagram for the radial displacement of an annulus of fluid. 

These equations reduce, respectively, to 

n(n - 1)  1 
9 3 3  - ~ 9 + -n2 (n2 - 1) = 0, 

A 6A 
(4.11) 

(4.12) (2n - 1)g - - (2n2 - I )  = 0. 

The solution of this system of equations in A-93 space is shown as a solid curve in 
figure 14. The dashed lines define the stability domain for each mode (cf. (4.9)). It 
may be seen that for A greater than approximately 0.3, the system will always be 
stable, independent of 93. This corresponds to a relatively small volume of annulus 
fluid or small rate of injection, for a particular system of fluids. Physically, it means 
that stabilization at small radii by surface tension overlaps with the stabilization at 
higher radii caused by the thinning of the annulus . For lower values of A ,  there 
is a window of instability for a certain range of intermediate radial positions. For 
such values of A,  as the radius increases, the most unstable mode may increase in 
wavenumber. While the perturbations remain small so that the linear theory applies, 
there may be a cascade to higher modes. Ultimately, at sufficiently large 9, the 
system becomes totally stable. Furthermore, for some values of A,  a certain mode 
may grow and actually start decaying before the subsquent higher mode begins to 
grow and dominate. 

In the asymptotic limit of very large radius 9, total stabilization is predicted to 
occur for 

2n 
6 

(4.13) 
3 

9 2 9  --. 
- 2 4  

The highest unstable mode has wavenumber given by 

(4.14) 
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and hence this is the maximum number of drops which may form. 
The dotted curves in figure 14 represent a lower bound on the region of validity 

of the thin annulus approximation (cf. (4.5) and (4.6)). As seen, this is not a very 
restrictive simplification, particularly at small mobility ratio M3 /M2. 

S. S. S. Cardoso and A. W Woods 

Integrated linear growth rates 

As before (see 0 3.1), for very small initial perturbations, the most unstable mode 
may evolve owing to the change in radius of the base state. The growth rate of 
the perturbation should thus take into account the change in radial position of the 
interface with time. Including this displacement, the amplitude of the perturbation 
has the time-integrated form 

BO 

(4.15) 

Figure 15 shows the predicted evolution of the system for two different values of A.  
We have assumed here that noise in the system perturbs all modes with an initial 
disturbance of fixed amplitude Bo when they become unstable (equivalent to model 
B of 0 3). In figure 15(a), the magnitude of A is relatively large, and hence the system 
is unstable only over a very narrow range of 9. The transition from mode two to 
mode three occurs at small 9, but then the system rapidly becomes totally stable at 
larger B. The amplitude of the perturbation remains very small throughout. 

For a smaller value of A,  the window of instability is wider, figure 15(b). A cascade 
of modes from two to three, then four and eventually five is predicted. The largest 
amplitude of the instability occurs for mode three, after which there is a gradual 
decay until complete stabilization at larger B. The amplitude of the perturbation 
is larger than in the previous case, but still very small in comparison with those 
observed in the single interface problem (see figure 10). 

In the limit of very small A,  corresponding to a large volume of annulus fluid or a 
large injection rate, the behaviour of the system will approximate that of the single 
interface, analysed in 0 3. The quantitative criterion for this asymptotic limit may be 
derived by comparing (3.8) and (4.15) and is found to be A B 2 / n  << 1. 

A further interesting result concerns the breakup of the intermediate layer and 
the consequent formation of drops. If the initial disturbance grows sufficiently for 
nonlinear interaction to become significant, then the perturbation will lead to the 
formation of a number of droplets. However, particularly for small n, there is a 
relatively large range of radii over which each linear mode is dominant, and the 
linear theory gives a good estimate of the number of drops: it corresponds to the 
dominant linear mode when nonlinear effects become important. These drops then 
gradually move and separate from each other as they are pushed outward by the 
radial flow. 

In 0 4.3, we compare these theoretical predictions on (i) total stabilization and (ii) 
drop formation with some experimental observations. 
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FIGURE 15. Amplitude of each mode as a function of the radial position of the annulus 
for (a)  A = 0.2 and ( b )  A = 0.05. 

4.2. Experiments 

A set of experiments involving three fluids was performed. The Hele-Shaw cell (see 
0 3.2) was initially filled with a viscous fluid. A less viscous fluid was then slowly 
injected, so that it formed a small circular drop. Finally, the third highly viscous 
fluid was injected at a prescribed flow rate. Two different systems were used. The 
first consisted of very viscous natrosol solution as inner fluid, air as intermediate and 
cooking oil as outer fluid. The second system was silicone oil DC12500 as inner 
fluid, diluted glycerine as intermediate and silicone oil DClOOO as outer fluid (the 
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numbers refer to nominal viscosity in centistokes). The fluids were dyed with different 
colourings so that the developing interfacial patterns could be observed. 

The relevant physical properties of the fluids used are given in table 1. The 
surface tension coefficient between the diluted glycerine solution and silicone oil was 
measured by the sessile drop method (Isenberg 1978). These different systems and the 
magnitude of the flow rates were selected so that different dynamical regimes could 
be observed. 

4.3. Comparison with experiments 
4.3.1. Suppression of the instability by annulus thinning 

Figure 16 shows a sequence of photographs of the displacement of an annulus of 
diluted glycerine by very viscous silicone oil, DC12500. The outer fluid is a less viscous 
silicone oil, DC1000, with mobility M3 = 4.28 x cm3 s g-’ (see table 1); this 
is approximately nine times smaller than that of the diluted glycerine, and an order 
of magnitude larger than the displacing silicone oil, so that our earlier theoretical 
simplifications are valid. The outer interface has therefore an unstable viscosity jump, 
while the inner interface is highly stable. The injection rate is Q = 1.38 cm2 s-l, the 
critical radius is R, = 0.019 cm and A = 3.2 x 

It may be seen that during the outward flow, there is a continuous thinning of 
the annulus of glycerine. The outer interface is apparently stable and no growing 
perturbation is visible. Let us compare this situation with the behaviour of a single 
diluted glycerine-silicone oil DClOOO interface. This is shown in figure 17; the flow 
rate is the same as in the experiment in figure 16. The difference in the dynamics is 
remarkable. The displacement is clearly unstable, and twelve fingers develop, growing 
to a length of approximately 2 cm. 

In figure 18, we present the theoretical predictions for the growth of the instabilities 
for the experiments in figures 16 (dashed lines) and 17 (solid lines). A permanent 
initial disturbance of amplitude Bo is assumed. The range of 9 shown corresponds to 
that where an instability is visible in the single interface experiment in figure 17. The 
observation of mode twelve throughout the experiment in 17 is well predicted by our 
calculations. These suggest that mode thirteen might become visible during the last 
frames, but this was not observed, possibly owing to nonlinear effects; these effects 
may also cause the amplitude to grow to 2 cm more rapidly. The dashed curves 
predict that the outer interface of the spreading annulus (figure 16) is not totally 
stabilized by the presence of the nearby inner stable interface. There is still a growing 
instability; however, the theory suggests that it grows much more slowly than in the 
single interface experiment. Indeed, there is almost an order of magnitude difference 
in the amplitudes of the instabilities (during the stage in which the instability is visible 
in figure 17); and this large difference accounts for the fact that a growing instability 
was not clearly seen in figure 16. 

We should mention that it is very difficult to achieve total stabilization experimen- 
tally. This would require a very large value of A, which we were unable to get with 
common immiscible fluids and feasible flow rates. Nevertheless, the results above 
show an O(1) effect of the thinning of the annulus on the growth of the instability, 
which results in the suppression of the instability on the scale of our experiments. 

4.3.2. Drop formation 
A further interesting experimental observation concerns the formation of drops. The 

eventual breakup of the intermediate layer of glycerine in the silicone oil DC12500, 
diluted glycerine, silicone oil DClOOO system would require a larger Hele-Shaw cell 
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FIGURE 16. Displacement of silicone oil DC12500 (inner fluid), diluted glycerine (annulus fluid) and 
silicone oil DClOOO (outer fluid) at a flow rate Q = 1.38 cm2 s-’: (a )  &? = 116, ( b )  9 = 168, ( c )  
92 = 232, ( d )  W = 289 and ( e )  &? = 405. 

than the one used here. We have therefore used a system of fluids for which A is 
much smaller to show this effect. 

Figure 19 shows the displacement of an annulus of air by a very viscous natrosol 
solution. The outer fluid is cooking oil. It may be seen that a wavelike pattern 
develops at the unstable air-oil interface. The instability grows until its amplitude 
reaches the thickness of the air annulus; at this moment, the troughs of the outer 
fluid merge with the inner viscous fluid, and small bubbles of air form and separate. 
The breakup of the annulus of air results in the formation of fourteen bubbles which 
are then displaced by the outward radial flow. 

and R, = 0.033 cm (Q  = 27 cm2 s-l). Since 11%’ << 1, 
the inner stable interface has only a secondary effect on the dynamics of the outer 
interface. The evolution of the air-oil interface should therefore be well described 
by the integrated growth rate for a single interface, equation (3.8) which is the 
limiting form of equation (4.15). The corresponding theoretical predictions are shown 
in figure 20. A constant noise level of amplitude A0 is assumed to trigger each 

In this experiment, A - 
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FIGURE 17. Displacement of silicone oil DClOOO by diluted glycerine at a flow rate 
Q = 1.38 cm2 SKI: (a )  92 = 84, ( b )  92 = 163, ( c )  92 = 221, ( d )  92 = 279 and (e) !B = 400. 

mode. The experiment began at Wi = 61 (Ri = 2 cm) and hence the integration 
was performed for 90, > Bi. Our calculations suggest that mode 14 or 15 should 
dominate at the observed moment of rupture of the annulus. This is in excellent 
agreement with the laboratory observations above. The initial annulus of air in this 
experiment seems to be sufficiently thin for rupture to occur still within the linear 
growth regime. 

5. Stabilization by controlling the rate of injection 
5.1. Single interface 

We have seen that surface tension between the two fluids has a stabilizing effect on 
the viscous instability. In the case of a radial displacement, if the velocity of the 
interface is sufficiently small, the effect of surface tension is dominant and there is 
total stabilization. The interface may therefore be stable, even at large radial positions, 
by controlling the rate of injection of fluid. The upper bound on the flow rate such 
that the flow is stable may be calculated by requiring that the radial position of the 
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FIGURE 18. Amplitude of the dominant mode as a function of the radial position, for a constant 
disturbance of amplitude Bo for 2 > 1. Dashed line - theoretical prediction of (4.15) for the 
experiment in figure 16; solid line - theoretical prediction of (3.8) for the experiment in figure 17. 

interface is equal to the critical radius for instability (see 0 3) .  Using equation (33, 
we have 

12~M2T 
Q =  . 

For small radii, the flow rate can be relatively large whilst the interface is stable. This 
is because of the large curvature of the interface and hence a large stabilization effect 
by surface tension. However, as the radial position of the interface increases, the flow 
rate must decrease for the flow to remain stable. 

The variation of this critical flow rate with time, from 
initiated, may be obtained by integrating (5.1), where Q = 
We have 

Q = ( l27~M2T)~/~  ( & t ) - l l 3 .  

the moment injection was 
~ z R R ,  and R = 0 at t = 0. 

The injection rate should therefore decrease as t-'l3 for the flow to be stable. 

5.2. Spreading annulus 

We have seen that in the case of a spreading annulus, there are two stabilizing 
mechanisms: surface tension operates at small radii and the continual thinning of 
the annulus at large radii. The requirement that at each radial position all modes 
are stable is expressed by equations (4.9) and (4.10). The numerical solution to these 
equations, represented in A-$2 space in figure 14, determines the maximum flow rate 
for which the flow is still stable. It is convenient to define the new non-dimensional 
variables 
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FIGURE 19. Displacement of very viscous natrosol (inner fluid), air (annulus fluid) and cooking oil 
(outer fluid) at a flow rate Q = 27 cm2 s-l: ( a )  92 = 61, ( b )  92 = 115, ( c )  3 = 161, ( d )  92 = 173 and 
( e )  92 = 211. 

Figure 21 shows the variation of the maximum injection rate Q' with radial position 
R'. As in the case of the displacement of a single interface, at small radii, the large 
stabilizing effect of surface tension allows the injection rate to be relatively large. 
Then, as the radius increases, the flow rate must decrease. However, at still larger 
radii, the flow rate may increase again. This is because the stabilization caused by the 
thinning of the annulus becomes increasingly important. 

The allowed variation of the flow rate with time, from the moment injection was 
initiated, is shown in figure 22, where 

t* = (--) M3 271 3/2 (1271M3T)t. 
M2 v (5 .5 )  
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FIGURE 20. Amplitude of the dominant mode as a function of the radial position, for a constant 
disturbance of amplitude A0 for W > 61. Theoretical prediction of (3.8) for the experiment in 
figure 19. 
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FIGURE 21. Maximum injection rate for a stable flow as a function of the radial position. 

The limit of small radial positions 
At sufficiently small radial positions, the requirement that all modes are stable 

is equivalent to that of mode two being stable, since all higher modes are stable 
independently of the magnitude of the flow rate. It is then possible to determine 
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FIGURE 22. Maximum injection rate for a stable flow as a function of time. 

analytically the critical flow rate by solving (4.9) with n = 2. For R' << 1, we have 

. 1  Q = -  
R' ' 

The time dependency is given by 

-113 

Q ' =  ( $ t * )  . (5.7) 

As expected, these solutions are similar to the corresponding ones for a single 
interface, (5.1) and (5.2). Solutions (5.6) and (5.7) are represented as dotted curves in 
figures 21 and 22, respectively. It may be seen that this asymptotic solution is a good 
approximation to the full solution for R' < 0.2, t' < 0.01. 

The limit of large radial positions 

Our asymptotic analysis in 5 4.1 showed that for sufficiently large radial position, 
the stability domain is defined by equation (4.13). In terms of our new starred 
variables, we have in this limit 

(5 .8 )  
Q * 2  =-R' 

3 
The integration in time leads to 

(5.9) 

Solutions (5.8) and (5.9) are represented as dashed curves in figures 21 and 22, 
respectively. The asymptotic solution is a good approximation for R' > 10, t' > 50. 
The flow rate may therefore increase linearly with time for the flow to be stable. 
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6. Conclusions 
We have investigated the stability of the immiscible displacement of an intermediate 

layer of fluid, bounded by two other fluids of different viscosities. The linear stability 
analyses for a thin intermediate layer shows that there are two different modes: a 
global mode which is determined by the viscosities of only the bounding fluids and 
an internal mode associated with the local stability of the two interfaces. When 
the displacement is globally unstable, viscous fingers of the rear, less viscous fluid 
eventually penetrate across the intermediate layer and into the more viscous leading 
fluid; this process is shown to be similar to the classical Saffman-Taylor instability 
described in many previous studies on viscous fingering (Homsy 1987). 

In this paper, we have focussed on the the dynamics of the new internal mode. A 
globally stable flow but with a locally unstable leading interface was investigated. It 
was found that in a rectilinear geometry, this displacement is always unstable and, 
as a result, the intermediate layer will eventually break up. However, in a radial 
source flow, there are two stabilizing mechanisms. For small radii, surface tension 
stabilizes the flow (as in the displacement of a single interface, Paterson 1981) and for 
large radii, the continual thinning of the annulus suppresses the instability of each 
mode, leading eventually to stability. In this case, there is a window of instability at 
intermediate radii for a constant rate of injection of fluid. As the radius increases, 
each of these modes is stabilized in turn; hence, a cascade to higher-order modes is 
observed, as the annulus moves outward. If the growth of the instability during this 
stage is sufficiently large, nonlinear effects become important and the annulus of fluid 
will rupture to form a number of drops; this number is given by the dominant linear 
mode at that time. In contrast, if the instability remains sufficiently small, then it may 
be totally stabilized once the radius becomes sufficiently large, 9 2 3/(2A), where A 
is inversely proportional to the volume of annulus fluid (see equation (4.7)). We also 
show that by suitably varying the magnitude of the rate of injection of fluid, the flow 
may remain stable for all radial positions. 

A series of experiments was carried out, using a circular Hele-Shaw cell. The dif- 
ferent qualitative behaviours of a three-fluid system described above were confirmed. 
Quantitative comparison between the experimental results and the theoretical predic- 
tions for the cascade of modes and the number of drops formed shows remarkable 
agreement. 

This work was begun while the authors were at the 1993 GFD summer program 
at the Woods Hole Oceanographic Institution. We would like to thank Professor J. 
Keller for helpful suggestions on the instability calculations, Dr J. R. Lister for useful 
discussion, and Dr J. Whitehead and Mr R. Frazel for use of the GFD laboratory at 
WHOI. The financial support of the EEC Science Program, WHOI and NERC are 
gratefully acknowledged. 
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